MERAMEC RIVER BASIN 175 ## 07014000 HUZZAH CREEK NEAR STEELVILLE, MO (Ambient water-quality monitoring network) ## WATER-QUALITY RECORDS $\begin{tabular}{ll} LOCATION.--Lat $37^\circ58'29''$, long $91^\circ12'16''$, in SE 1/4 SW 1/4 sec.25, T.38 N., R.3 W., Crawford County, Hydrologic Unit 07140102. From Steelville take Highway 8 east for about 9 mi. \\ \end{tabular}$ DRAINAGE AREA.--259 mi². PERIOD OF RECORD.--November 1993 to current year. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 | DATE | TIME S | DIS- CHARGE, INST. (CUBIC TEMPER- FEET ATURE E PER WATER SECOND) (DEG C) (00061) (00010) | | SPE-
CIFI
CON-
DUC'
ANCI
(µS/c | - WA' IC WH' - FI: T- (ST: E A' EM) UNI | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | | VED
R-
NT
UR-
ON) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (mg/L) (00340) | | COLI-
FORM,
FECAL,
0.7
µm-MF
(COLS./
100 mL)
(31625) | | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 mL)
(31673) | | ALKA-
LINITY
WAT WH
TOT FET
FIELD
mg/L as
CaCO ₃)
(00410) | |------------------|--|--|--------------------------------------|---|---|---|-----------------------------------|--|-------------------------------------|---------------------------------|---|---|---|--|---|---|--| | NOV
21 | 1230 | 230 73 10.0 | | 39 | 0 8 | 3.4 | 11.9 | | 106 | | | | к7 | | К6 | | 198 | | JAN
17 | 1042 | 182 | 9.0 | 36 | i8 8 | 3.0 | 12 | . 7 | 1 | 09 | < | 10 | K | 22 | K1 | .7 | 47 | | MAR
05 | 1315 | 80 | 10.0 | 37 | 4 8 | 3.2 | 11 | . 9 | 1 | 05 | | | K | 11 | 2 | 26 | 186 | | APR
09 | 1030 | 245 | 245 9.5 | | .7 8 | 3.3 | 11.6 | | 100 | | | | 33 | | 52 | | 132 | | JUN
24 | 1055 | 310 22.5 | | 33 | 33 | 7.2 | 8.4 | | 98 | | < | <10 | | K70 | | 63 155 | | | AUG
19 | 1040 | 111 | 23.0 | 37 | 3 8 | 3.0 | 8 | .0 | | 91 | | | 2 | 10 | 24 | 10 | 186 | | DATE | BICAR-
BONAT
WATE
WH I
FIEL
(mg/L
HCO
(0045 | E BONAT R WATE T WH I D FIEL as (mg/L 3) CO | E NIR GT NO $_2$ TO TO as (m_3) as | TRO-
EN,
+NO ₃ 1
TAL
g/L
s N)
630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | GE
AMMO
TOI
(mg | CAL
J/L
N) | NITROGEN,
MONI
ORGAL
TOT
(mg
as
(006 | AM-
A +
NIC
AL
/L
N) | PHO
PHOI
TOT
(mg
as | RUS
AL
/L
P) | | RUS
TAL
g/L
FP) | HAR
NES
TOT.
(mg
as
CaC | SS
AL
1/L
5
O ₃) | CALCI
DIS
SOLV
(mg/
as C | 5-
VED
/L
a) | | NOV
21
JAN | 12 | 9 | 0 0. | 150 | <0.010 | 0.0 | 10 | <0. | 20 | <0.0 | 20 | 0.0 | 010 | | | - | | | 17
MAR | 5 | 7 | 0 0. | 260 | 0.010 | 0.0 | 20 | <0. | 20 | <0.0 | 20 | <0.0 | 010 | 1 | .80 | 3 | 34 | | 05
APR | 22 | 7 | 0 0. | 250 | <0.010 | 0.0 | 050 | <0. | 20 | <0.0 | 20 | 0.0 | 010 | | | - | | | 09
JUN | 16 | 0 | 0 0. | 450 | <0.010 | 0.0 | 20 | <0. | 20 | 0.0 | 20 | 0.0 | 010 | | | - | | | 24
AUG | 19 | 3 | 0 0. | 380 | <0.010 | 0.0 | 20 | <0. | 20 | 0.0 | 20 | <0.0 | 010 | 1 | .70 | 3 | 36 | | 19 | 21 | 210 0 | | 0.170 <0.0 | | 10 0.020 | | <0.20 | | <0.020 | | <0.010 | | | | | | | DATE | MAGN
SIU
DIS
SOLV
(mg/
as M | M, SODIU
- DIS-
ED SOLVE
L (mg/
g) as N | M, S
D SO
L (m
a) as | IS-
LVED
g/L
K) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | (mg | DE,
S-
LVED
g/L
Cl) | FLU
RID
DI
SOL
(mg
as | E,
S-
VED
/L
F) | RESI
AT 1
DEG | DUE
80
. C
S-
VED
/L) | RESII
TOTA
AT 1
DEG.
SUS
PENI
(mg | AL
105
. C,
S-
DED
g/L) | | M,
AL
OV-
BLE
J/L
Al) | ALUM
INUM
DIS
SOLV
(µg)
as A | M,
S-
VED
/L
Al) | | JAN
17
JUN | 2 | 2 2. | 4 0 | .80 | 9.1 | 3 | 3.1 | <0. | 10 | 2 | 20 | | <1 | < | 20 | <20 | | | 24 | 2 | 0 4. | 4 1 | . 2 | 7.7 | 2 | 2.8 | <0. | 10 | 2 | 16 | | <1 | | 20 | 9.0 | ס | | DATE | CADMI
TOTA
RECO
ERAB
(µg/
as C | L CADMI
V- DIS
LE SOLV
L (µg/
d) as C | - DI
ED SO
L (µ
d) as | PER,
S-
LVED
g/L
Cu)
040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | ERA
(µg | CAL
COV-
ABLE
(/L
Pb) | LEA
DI
SOL
(µg
as
(010 | S-
VED
/L
Pb) | NES
DI | S-
VED
/L
Mn) | RE(
ER <i>I</i>
(μg
as | CURY
FAL
COV-
ABLE
J/L
Hg) | ERA
(µg | CAL
COV-
BLE
/L
Zn) | ZING
DIS
SOLV
(µg/
as 2 | S-
VED
'L
Zn) | | JAN
17
JUN | <1 | <1. | 0 < | 1.0 | <3.0 | | <1 | <1 | . 0 | 2 | .7 | < 0 . | .10 | | <4 | <4. | . 0 | | 24 | <1 | <1. | 0 | 1.1 | 10 | | <1 | <1 | .0 | 7 | .9 | < 0. | .10 | | 2 | <1. | . 0 | $\hbox{K--Results based on colony count outside the acceptable range (non-ideal colony count).} \\$